
TDD: Test Driven Development
with Visual Studio 2010

Stefano Paluello

stefano.paluello@pastesoft.com

http://stefanopaluello.wordpress.com

Twitter: @palutz

mailto:stefano.paluello@pastesoft.com
http://stefanopaluello.wordpress.com/

Test Driven Development

• Test-driven development (TDD) is a software development
process that relies on the repetition of a very short
development cycle:
– the developer writes a failing automated test case that defines a desired

improvement or new function (RED)

– produces code to pass that test (GREEN)

– finally refactors the new code to acceptable standards (REFACTOR)

[Wikipedia]

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Code_refactoring

Test Driven Development

• Test Driven Development is one of the Extreme
Programming principles (actually is the first one), but
can be used also by itself

• TDD is a CHANGE OF APPROACH for developers, is a
new MINDSET, from writing code and then testing it
(if there is enough time) to writing the test first and
then writing the code to satisfy the test

Why do I need TDD?

Before TDD…

• The industry “standard” behavior was to write
the code, and then write the tests. This leads
to lots of applications without tests at all

• Also the “good” applications with some tests
written, weren’t (aren’t!!!) able to know
whether the new code has broken the existing
features

Typical result?

The new approach…

• Why do we have to stick on that plan?

• Kent Beck introduced a new method, inside
his book about Extreme Programming (XP), in
which he proposed to reverse this order by
starting with unit tests and then writing the
implementation.

Why TDD is good?

• Thinking about the tests pushes the developer to
understand better the gathered requirements

• With the tests defined, the developer can focus on
writing ONLY the code to satisfy them (reduce the
over-engineered code, or dead-code)

• The unit tests help to check that any new modification
won’t break the existing features

TDD is good (2)

• TDD speed-up your code! Ok, writing a whole
set of code to test your program could appear
as too much work, but with test you can trust
your code more and you can have a quick
feedback about your design and how your
objects behave. When all tests have succeeded,
you don’t need to spend so much time
debugging the tested code.

TDD is not

• Test Driven Development is good, not God! 

• Test Driven Development isn’t a magic stick
that will solve ALL your problems

• Test Driven Development is not working if
there is not a REALLY mind shift

TDD != Unit Test

• Ok, this could be a bit confusing but…

• Test Driven Development is a process, is a
mindset, a different approach, focusing on
isolated test case to drive design

• Unit Test is a procedure, a part of the test
process

How to justify TDD to PM

• Microsoft just published a research report
where was pointed out that using TDD, the
bugs and defects are reduced from 40% to
90% (nice code was made before! )

http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf

How to justify TDD to Dev Team Lead

• TDD increase the software’s flexibility

• To be testable, a codebase using TDD is more
decoupled and for this reason also adding
more features is easier

How to justify TDD to…

• Stop thinking and justify!

• Just CODE!

Ops, some advices before code…

• Write simple test that verify only ONE behavior

• Avoid dependencies between tests

• One test class for every class within the production code

• Use test initialization code before and test cleanup code after
running your test (sealed context)

• Verify that all the tests are passed before move to another
feature test

• Maximize the number of automated tests

TDD with Visual Studio

DEMO
Unit test with Visual Studio 2010

Demo Recap

• Despite the Intellisense, Visual Studio 2010
has some tools that help you to focus on TDD

• Using Code Coverage, Visual Studio will show
you the effectiveness of your tests

DEMO
Web test with Visual Studio 2010

Some test “tools” for VS2010

• Code Contracts

– allow you to explicitly declare the preconditions,
postconditions and invariant part of your code

– this improves also the testing via runtime checking
(injecting the contracts)

– it comes from Devlabs and it was an external
assemblies for .Net 3.5, now included in .Net 4.0

VS2010 tools (2)

• Pex and Moles
– Inside the Visual Studio 2010 Power tools extension

– Pex automatically generates test suites with high code coverage. Right
from the Visual Studio code editor, Pex finds interesting input-output
values of your methods (white box testing), which you can save as a
small test suite with high code coverage. Microsoft Pex is a Visual
Studio add-in for testing .NET Framework applications.

– Moles allows to replace any .NET method with a delegate. Moles
supports unit testing by providing isolation by way of detours and
stubs. The Moles framework is provided with Pex, or can be installed
by itself as a Microsoft Visual Studio add-in (example test Asp.Net and
Sharepoint applications!)

Contracts and Pex together

&

Programmazione per Device:
da Embedded a Desktop

Domande & Risposte

